Архангельск (8182)63-90-72 Астана (7172)727-132 Астана (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калинипград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Россия (495)268-04-70

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Казахстан (772)734-952-31

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://mechanobr.nt-rt.ru/ || mbw@nt-rt.ru

СЕПАРАТОР ЭЛЕКТРОСТАТИЧЕСКИЙ ЭЛКОР-2

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ НОТ 102.00.000 РЭ

САНКТ-ПЕТЕРБУРГ

ОГЛАВЛЕНИЕ

	crp.
1. НАЗНАЧЕНИЕ ИЗДЕЛИЯ	3
2. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ	3
3. СОСТАВ ИЗДЕЛИЯ	3
4. УСТРОЙСТВО СЕПАРАТОРА	4
5. ОРГАНЫ НАСТРОЙКИ И УПРАВЛЕНИЯ СЕПАРАТОРОМ	6
6. ПРИНЦИП РАБОТЫ СЕПАРАТОРА	6
7. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ	7
8. ПОРЯДОК УСТАНОВКИ	7
9. НАСТРОЙКА СИСТЕМ СЕПАРАТОРА	8
10. ПОРЯДОК ВКЛЮЧЕНИЯ СЕПАРАТОРА	9
11. СИСТЕМЫ БЛОКИРОВОК	10
12. ОСОБЕННОСТИ РАБОТЫ ВЫСОКОВОЛЬТНЫХ ИСТОЧНИКОВ	10
13. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	11
14. ЗАМЕНА ИЗНАШИВАЮЩИХСЯ ЭЛЕМЕНТОВ	11
15. КОНТРОЛЬ И ЗАМЕНА СМАЗКИ В ПОДШИПНИКОВЫХ УЗЛАХ	12
16. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	12

НАЗНАЧЕНИЕ ИЗДЕЛИЯ

Сепаратор предназначен для сухого разделения сыпучих материалов по электрофизическим свойствам и может быть использован для обогащения и классификации минерального и техногенного сырья.

1. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ

1.1.Основные технические данные и характеристики приведены в таблице 1.

Таблина 1

	Таолица т
Основные параметры и размеры	Норма
Крупность питания, не более, мм	5,0
Производительность, не более, кг/час	500
Количество получаемых продуктов	4
Количество рабочих камер	2
Температура обрабатываемого материала, °С, не более	95
Диаметр осадительного электрода (барабана), мм	270
Длина осадительного электрода, мм	600
Скорость вращения осадительных электродов, об/мин	$30 \div 240$
Количество высоковольтных источников	1
Напряжение на высоковольтных электродах, кВ, регулируемое	± 3 ÷ 40
Максимально допустимый ток высоковольтных источников, мА	10
Полярность высоковольтных электродов	изменяемая
Потребляемая мощность, кВт, не более	1,9
Напряжение питания	3х380 В, 50 Гц
Габаритные размеры, мм,	
ширина	900
длина	1080
высота	2350
Масса, кг, не более	500
Регулирование скорости вращения осадительных электродов в камерах	Общее
Регулирование величины высокого напряжения и силы тока в камерах	Общее

- 1.2.Средний срок службы до списания не менее 7 лет.
- 1.3. Средний ресурс сепаратора до первого капитального ремонта не менее 20000 ч.
- 1.4.Сепаратор должен эксплуатироваться в отапливаемом и вентилируемом помещении при температуре окружающего воздуха от +5°C до +40°C, относительной влажности до 80% и отсутствии в окружающем воздухе кислотных, щелочных и других агрессивных примесей, вызывающих коррозию металлов, или микроорганизмов, способствующих плесенеобразованию.

2. СОСТАВ ИЗДЕЛИЯ

- 2.1.Сепаратор состоит из двух блоков технологической секции (Рис.1, I) и разгрузочной секции (Рис.1, II).
- 2.2.В состав сепаратора входят покупные комплектующие изделия, характеристики которых приведены в таблице 2.

Таблица 2

			1 000111	
Обозначение	Наличие			
нормативно-	доку-	Наименование и	Тип	Кол.
технического	ментации	обозначение		
документа				
	+	Электродвигатель		4
	+	Редуктор червячный, i = 20		2
	+	Редуктор червячный, i = 7		2
	+	Измеритель-регулятор	2TPM1	1
	+	Преобразователь частоты	Lenze	1
АГИЕ.644336.028ПС	+	Контактор малогабаритный	КМИ 11210	4
		Реле	MY2N	3
АГИЕ.644336.028.ПС	+	Электротепловое реле	РТИ 1305	4
		Автоматический	ИЭК	8
		выключатель	BA 47-29	
		Кнопка «Пуск-Стоп»	APBB-22N	4
		Светильник	ЛПО2001, 8 Вт	3
		люменисцентный		
ГОСТ 1284		Ремень клиновой	A, 1000	2
ΓΟCT 1284		Ремень клиновой	A, 630	2
ГОСТ 5720		Подшипник	UCF 206	4
ГОСТ 5720		Подшипник	UCF204	4

- 2.3.С сепаратором поставляется техническая документация:
- 2.3.1. паспорт,
- 2.3.2. руководство по эксплуатации,

3. УСТРОЙСТВО СЕПАРАТОРА

- 3.1.Общее описание конструкции.
- 3.1.1. Основой конструкции блоков сепаратора являются каркасы из труб квадратного сечения, на которых размещены детали, узлы и системы сепаратора
- 3.1.2. Технологическая секция разделена на два отсека технологический и приборный.
- 3.2. Устройство технологического отсека.
- 3.2.1. Технологический отсек состоит из загрузочного узла, двух технологических камер и разгрузочного узла.
- 3.2.2. Загрузочный узел состоит из приемного бункера 1.
- 3.2.3. В технологических камерах расположены следующие узлы:
- 3.2.3.1.Вибропитатель 2.
- 3.2.3.2.Осадительные электроды (барабаны) 3, 4.
- 3.2.3.3.Очистительные щетки 5, 6.
- 3.2.3.4.Системы электродов 7, 8.
- 3.2.3.5.Отсекатели 9, 10, 24, 25.
- 3.2.3.6.Технологические камеры отделены друг от друга и от разгрузочного узла бункерами 11, 12, а от приборного отсека задней стенкой 19.

- 3.2.3.7.Для наблюдения за технологическим процессом имеются четыре окна 13-16.
- 3.2.3.8. Доступ в рабочее пространство технологического отсека осуществляется через дверь 17, и через окна. Дверь закрываются на замки 34.
- 3.2.3.9.. На верхней трубе каркаса технологического отсека расположен концевой выключатель системы защитных блокировок (на рисунке не показан).
- 3.2.3.10. На правой стороне сепаратора в габаритах труб каркаса расположены элементы ременной передачи привода вращения щетки: шкив щетки 20, шкив редуктора 21 и ремень 22 (показаны только для верхнего отсека).
- 3.2.3.11. Элементы передачи в целях безопасности укрыты щитком 23 (показан только для нижнего отсека).
- 3.2.3.12. На правой стороне также расположены рукоятки поворота отсекателей 26-29. Рукоятки (и положение отсекателей) фиксируются винтами или болтами M5.
- 3.2.3.13. На левой стороне сепаратора в габаритах труб каркаса расположены элементы ременной передачи привода вращения барабана: шкив барабана 30, шкив привода 31 и ремень 32 (показаны только для верхнего отсека).
- 3.2.3.14. Элементы передачи в целях безопасности укрыты щитком 33 (показан только для нижнего отсека).
- 3.2.4. Разгрузочный узел образован конструктивными элементами нижнего бункера 11, обеспечивающими направление потоков материалов в разные приемные устройства.
- 3.3. Устройство приборного отсека.
- 3.3.1. В приборном отсеке расположены следующие узлы и системы сепаратора.
- 3.3.1.1. Привод осадительных электродов, состоящий из подвижных кронштейнов 35, 36 с установленными на них двигателями 37, 38 и редукторами 39, 40. Кронштейны крепятся к каркасу при помощи четырех болтов 54, и перемещаются (для натяжения ремня) при помощи натяжных болтов 41, 42.
- 3.3.1.2. Привод очистительный щёток, состоящий из подвижных кронштейнов 43, 44 с установленными на них двигателями 45, 46 и редукторами 47, 48. Кронштейны крепятся к каркасу при помощи четырех болтов 55 и перемещаются (для натяжения ремня) при помощи натяжных болтов.
- 3.3.1.3. Монтажная панель 49. На монтажной панели расположены:
- 3.3.1.3.1. Автоматические выключатели QF, QF1 -QF6.
- 3.3.1.3.2. Контакторы КМ1 и КМ2 (78, 79) с термореле и приставками дополнительных контактов.
- 3.3.1.3.3. Пусковые (КМ5, КМ6) и промежуточные (KV1-KV3) реле.
- 3.3.1.3.4. Перключатель системы блокировки SA1.
- 3.3.1.3.5. Частотный преобразователь А1.
- **3.3.1.3.6.** Виброрегулятор A2.
- 3.3.1.3.7. Блок промежуточных контактов 106.
- 3.3.1.3.8. Блок силовых контактов для подключения электропитания 107.
- 3.3.1.4. Высоковольтный блоки 50 и блок управления 51 источников высокого напряжения.
- 3.3.2. Приборный отсек закрывается дверью 52. Дверь закрываются замками 34. На двери размещены органы управления сепаратором: панели управления сепаратором 56, панели управления высоковольтными источниками 57 и кнопка аварийной остановки 53.
- 3.3.3. На боковой стенке приборного отсека находится сетевой выключатель 58, пъезоизлучатель 59, проходная втулка для кабеля внешнего питания 70 и болт заземления 104.
- 3.4. Устройство разгрузочной секции (Рис.4).
- 3.4.1. Разгрузочная секция состоит из рамы (1) и проходных бункеров (2). Проходные бункера крепятся к раме болтами (3) и могут устанавливаться с направлением выходного патрубка на правую или на левую сторону.
- 3.5.Схема электрическая принципиальная НОТ 102.00.001 ЭЗ.

4. ОРГАНЫ НАСТРОЙКИ И УПРАВЛЕНИЯ СЕПАРАТОРОМ

- 4.1. Технологический отсек.
- 4.1.1. Шибер для установки толщины слоя подаваемого на лоток материала 60.
- 4.1.2. Подвижные элементы отсекателей 63, 64. Показаны только для отсекателей проводящего продукта. Аналогичными элементами оснащены и отсекатели непроводящих продуктов (на рисунке не показаны).
- 4.1.3. Ползуны 61 и кронштейны 62 системы электродов.
- 4.2.Приборный отсек.
- 4.2.1. Органы настройки, расположенные на монтажной панели 49.
- 4.3. Каркас и внешние панели сепаратора.
- 4.3.1. Поворотные рукоятки отсекателей 26-29.
- 4.3.2. Сетевой выключатель 58.
- 4.3.3. Кнопка аварийной остановки 53.
- 4.4.Панель управления сепаратором 56.
- 4.4.1. Комбинированные кнопки «Пуск-Стоп» 87 89 запуска и остановки систем сепаратора.
- 4.4.2. Прибор индикации скорости вращения осадительных электродов (барабанов) 90.
- 4.4.3. Рукоятка переменного резистора для регулирования скорости вращения осадительных электродов (барабанов) 91.
- 4.4.4. Рукоятка переменного резистора для регулирования производительности вибропитателя 92.
- 4.4.5. Переключатель состояния системы блокировки вибропитателя 93.
- 4.5.Панель управления высоковольтным источником 57.
- 4.5.1. Комбинированная кнопка «Пуск-Стоп» 94 запуска и остановки высоковольтного источника.
- 4.5.2. Индикатор величины высокого напряжения 95.
- 4.5.3. Индикатор величины тока высоковольтных электродов 96.
- 4.5.4. Светодиодные индикаторы полярности высокого напряжения, подаваемого на электроды 97,98.
- 4.5.5. Светодиодный индикатор наличия высокого напряжения 99.
- 4.5.6. Светодиодный индикатор отключения высокого напряжения по блокировке 100.
- 4.5.7. Светодиодные индикаторы аварийных режимов 101.
- 4.5.8. Рукоятка переменного резистора регулирования величины высокого напряжения 102.
- 4.5.9. Рукоятка переключателя предела измерения тока высоковольтных электродов 103.

5. ПРИНЦИП РАБОТЫ СЕПАРАТОРА

- 5.1.Исходный материал из бункера 1 поступает на лоток вибропитателя 2, далее на поверхность вращающегося барабана 4 (осадительного электрода), с которого выносится в зону коронного разряда.
- 5.2.В поле коронного разряда частицы материала приобретают заряд коронирующего электрода и под действием электрических сил прижимаются к поверхности барабана, поскольку последний имеет заряд, противоположный по знаку заряду коронирующего электрода.
- 5.3. Контактируя с осадительным электродом, каждая частица разряжается. Частицы с высокой электропроводностью быстро отдают свой заряд и центробежной силой сбрасываются с барабана. Частицы со значительно меньшей электропроводностью медленнее отдают свой заряд и поэтому оседают на барабане.
- 5.4. Наиболее прочно сцепленные с осадительным электродом частицы удаляются щетками.
- 5.5. Регулируемый осекатель 10 направляет потоки материала в соответствующие течки. Та-

ким образом, проводящие электрический ток частицы направляются в передний (по ходу вращению барабана) отсек, а непроводящие - снимаются с поверхности барабана вращающейся щеткой в задний отсек.

5.6.В нижней камере, материал подвергается дополнительной перечистке.

6. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 6.1.Конструкция сепаратора соответствует требованиям ГОСТ 12,2.003 и "Единым правилам безопасности", утвержденным Госгортехнадзором СССР .По условиям электробезопасности электрооборудование сепаратора относится к электроустановкам до 1000 В и отвечает требованиям, предусмотренным "Правилами устройства электроустановок (ПУЭ), утвержденным Госэнергонадзором РФ.
- 6.2.Электрооборудование, установленное на сепараторе, имеет класс защиты I по ГОСТ 12.2.007.0 и устройство для подсоединения заземления 70, выполненное по ГОСТ 21130.
- 6.3. Принципиальная электрическая схема сепаратора предусматривает ручное управление сепаратором (включение и отключение) с помощью кнопок и выключателей, расположенных на пульте управления. Схемой предусмотрены следующие виды защиты:
- 6.3.1. отключение высокого напряжения при открытии дверей технологического отсека и (или) приборного отсека,
- 6.3.2. защита электродвигателей от перегрузки и короткого замыкания,
- 6.3.3. защита высоковольтных источников от перегрузки, перегрева и короткого замыкания,
- 6.3.4. защита электромагнитного вибратора от короткого замыкания,
- 6.4.К обслуживанию сепаратора допускаются лица, ознакомленные с его конструкцией, настоящим руководством по эксплуатации, «Правилами технической эксплуатации электроустановок потребителей» и «Правилами техники безопасности при эксплуатации электроустановок потребителей», утвержденных Госэнергонадзором РФ а также прошедшие инструктаж по технике безопасности в соответствии с ГОСТ 12.0.004.
- 6.5. При эксплуатации сепаратора он должен быть надежно заземлен в месте, обозначенном знаком заземления. Сопротивление заземляющего провода между заземляющим болтом и заземляющим контуром не должно превышать 0,5 Ом.
- 6.6.Включение сепаратора со снятыми ограждениями клиноременных передач не допускается.
- 6.7.Не допускается работа на сепараторе при неплотном закрытии хотя бы одной из дверей технологического отсека и (или) приборного отсека.
- 6.8.Открывание дверей технологических отсеков и снятие заглушек и ограждений приводов допускается лишь после отключения сетевого автоматического выключателя. При этом на пульте должна быть вывешена предупредительная табличка "Не включать! Работают люди!".
- 6.9. При работе сепаратора выделяется озон. Помещение, в котором установлен сепаратор, должно быть оснащено системой вытяжной вентиляции.

7. ПОРЯДОК УСТАНОВКИ

- 7.1.Перемещение сепаратора осуществляется подъемно-транспортными механизмами.
- 7.2. Расположение сепаратора на рабочем месте должно обеспечивать удобство обслуживания и наблюдения за его работой. Расстояние от окружающих предметов до частей сепаратора должно быть не менее 1500 мм. Габаритные и установочные размеры сепаратора приведены на Рис.1. Сепаратор должен устанавливаться на основании, исключающем вибрацию и возможность опрокидывания.
- 7.3. Место установки сепаратора должно быть обеспечено:
- 7.3.1. шиной заземления,
- 7.3.2. вытяжной вентиляцией,

- 7.3.3. устройством для подключения сепаратора к сети 3х380 В.
- 7.4.Для установки сепаратора на рабочем месте необходимо выполнить следующие работы.
- 7.4.1. Установить разгрузочную секцию на подготовленное основание, используя регулируемые опоры, анкерные болты или другие приспособления.
- 7.4.2. Установить технологическую секцию на разгрузочную секцию.
- 7.4.3. Соединить разгрузочную секцию и технологическую секцию болтами М10х80
- 7.4.4. Удалить приспособление, предохраняющее осадительный электрод (барабан) верхней камеры от повреждения лотком вибропитателя при транспортировке.
- 7.4.5. Заземлить сепаратор, используя болт заземления 70.
- 7.4.6. Установить горизонтальное положение осей барабанов (осадительных электродов) по уровню.
- 7.4.7. Проверить отсутствие в загрузочном бункере, рабочих секциях и течках посторонних предметов,
- 7.4.8. Проверить затяжку всех соединений системы коронирующих электродов.
- 7.4.9. Установить все автоматические выключатели на монтажной панели 49 в положение «Выкл».
- 7.5.Подключить сепаратор к 3-x фазной сети переменного тока напряжением 380~B, кабелем с сечением жил не менее $2.5~mm^2$.
- 7.6.Включить сетевой выключатель 58.
- 7.7. Включит автоматический выключатель 71 и 72. В технологическом и приборном отсеках включатся люминесцентные светильники. Светильники имеют собственные выключатели.
- 7.8. Включить автоматические выключатели 73 и 74.
- 7.9. Нажать зеленую клавишу кнопки 88 привода щетки. На кнопке загорится подсветка, щетки начнут вращаться. Визуально проверить направление вращения щеток. Скребки щеток должны набегать на осадительный электрод (барабан) сверху вниз.
- 7.10. Выключить привод щеток нажатием красной клавиши кнопки 88.
- 7.11. В случае неправильного направления вращения щеток необходимо выключить сетевой выключатель 58, отключить сепаратор от сети переменного тока и поменять местами любые два фазных провода питания на устройстве подключения кабеля сепаратора к внешней сети.
- 7.12. Повторно выполнив п.п.8.9-8.11 убедиться в правильном направлении вращения щеток, после чего выключить сепаратор.

8. НАСТРОЙКА СИСТЕМ СЕПАРАТОРА

- 8.1.Перед настройкой сепаратор необходимо отключить от сети переменного тока.
- 8.2. Настройка толщины слоя материала на лотке.
- 8.2.1. При необходимости изменения толщины слоя материала на лотке необходимо отпустить гайки 65, переместить шибер 60 в нужное положение и затянуть гайки.
- 8.3. Настройка системы электродов.
- 8.3.1. В каждой камере установлена система высоковольтных электродов, состоящая из трех элементов:
- 8.3.1.1.Одинарный коронирующий электрод;
- 8.3.1.2. Двойной коронирующий электрод;
- 8.3.1.3. Электростатический (отклоняющий) электрод.
- 8.3.2. Каждый электрод имеет возможность перемещаться по дуге окружности вдоль поверхности барабана и в радиальном направлении, перпендикулярном поверхности барабана.
- 8.3.3. Для изменения угла установки электродов необходимо отпустить винты 66 (рис.1) на обеих сторонах электрода и, взяв обеими руками ползуны 61, переместить электрод по рельсам в нужное положение, после чего затянуть винты 66.

- 8.3.4. Для изменения расстояния электродов от барабана необходимо отпустить винты 67 и, взяв обеими руками кронштейны 62, переместить их в нужное положение, после чего затянуть винты 67.
- 8.3.5. Для изменения положения пластины 68 отклоняющего электрода, необходимо взяв ее обеими руками, не прилагая больших усилий, аккуратно повернуть в нужное положение.
- 8.4. Настройка отсекателей.
- 8.4.1. Для изменения высоты отсекателя необходимо отпустить три гайки 69, установить подвижную пластину отсекателя в нужное положение и затянуть гайки 69.
- 8.4.2. Для изменения угла установки отсекателя необходимо отпустить болты рукоятки поворота отсекателя 26-26, установить отсекатель в нужное положение и затянуть болты.
- 8.5. Установка полярности высокого напряжения, подаваемого на электроды.
- 8.5.1. В состоянии поставки высоковольтные кабели установлены в гнезда, обеспечивающие отрицательную полярность напряжения подаваемого на электроды.
- 8.5.2. Для изменения полярности высокого напряжения необходимо установить наконечник высоковольтного кабеля в гнездо высоковольтного блока обозначенное знаком (+).

9. ПОРЯДОК ВКЛЮЧЕНИЯ СЕПАРАТОРА

- 9.1.Открыть двери приборного отсека.
- 9.2. Перед включением все автоматические выключатели на монтажной панели должны быть установлены в положение «Вкл», рукоятка выключателя SA1, 105 в верхнее положение (включена блокировка вибропитателя при остановке любой из систем сепаратора и открытии дверей технологического отсека).
- 9.3. Закрыть двери приборного отсека на замки.
- $9.4.\Pi.\Pi.\ 10.1-10.3$ выполняются один раз, после установки и настройки сепаратора, и после работ, во время которых снималась технологическая блокировка.
- 9.5.Вывести рукоятки всех регулировочных потенциометров на панелях управления в крайнее левое положение.
- 9.6.Включить сетевой выключатель QF 58. На цифровом табло измерителей скорости вращения значение уставки скорости вращения, соответствующее положению движка резистора 91.
- 9.7. Нажать зеленую клавишу кнопки 94 включения высоковольтного источника. На панели 57 высоковольтного источника загорится индикатор 97 или 98 установленной полярности подаваемого напряжения и светодиод 99 наличия высокого напряжения.
- 9.7.1. Рукояткой резистора 102 установить необходимое значение высокого напряжения, подаваемого на электроды, контролируя его по показанию прибора 95. На приборе 96 индицируется значение тока, протекающего в системе высоковольтных электродов.
- 9.7.1.1. При установке рукоятки переключателя 103 в положение « х 1 » сила тока соответствует показаниям, отсчитанным по шкале прибора.
- 9.7.1.2.При установке рукоятки переключателя 103 в положение « x 2 » сила тока соответствует показаниям, отсчитанным шкале прибора умноженным на 2.
- 9.8. Нажать зеленую клавишу кнопки 88 вращения щетки. Загорится лампа подсветки кнопки, щетки начнут вращаться.
- 9.9. Через 3-5 секунд нажать зеленую клавишу кнопки 87 включения привода барабана. На индикаторе скорости вращения индицируется величина скорости вращения.
- 9.9.1. Рукояткой резистора 91 установить необходимое значение скорости вращения барабана.
- 9.10. Нажатием зеленой клавиши кнопки 89 включить вибропитатель. Загорится подсветка клавиши.
- 9.10.1. Рукояткой резистора 92 установить необходимую амплитуду вибрации вибропитате-

ля.

- 9.11. Плановая остановка сепаратора производится нажатием красных клавиш кнопок, находящихся на панелях управления и отключением сетевого выключателя. Порядок выключения обратный порядку включения.
- 9.12. Аварийное отключение производится путем нажатия кнопки SBA 53. После аварийного отключения сепаратора необходимо произвести все действия, описанные в п.10.13.
- 9.13. Повторный пуск после аварийной остановки производить только после выявления и устранения причин, приведших к аварийной остановке.

10. СИСТЕМЫ БЛОКИРОВОК

- 10.1. В сепараторе предусмотрено две независимых системы блокировок защитная и технологическая.
- 10.2. Защитная система предусматривает снятие высокого напряжения с систем электродов при открывании двери технологического отсека. При срабатывании защитной системы на панели управления высоковольтным источником гаснет светодиодный индикатор «ВН вкл.» 99 и загорается желтый индикатор «Блокировка» 100.

Внимание!

При отключении высокого напряжения потенциал на металлических частях электродной системы спадает до безопасного уровня за 3 секунды!

- 10.3. Технологическая система предусматривает отключение подачи напряжение на вибропитатель и прекращение подачи материала в сепаратор при возникновении неисправности в любой из систем сепаратора, а именно:
- 10.3.1. при остановке привода любой из щеток,
- 10.3.2. при остановке привода осадительных электродов,
- 10.3.3. при открытии двери технологического отсека,
- 10.3.4. при отключении высокого напряжения.
- 10.4. Включение и отключение технологической системы блокировки осуществляется переключателем SA1 93.
- 10.5. При срабатывании технологической системы блокировки сепаратором подается звуковой сигнал пьзоизлучателем 59.
- 10.6. При срабатывании системы технологической блокировки необходимо нажать красную клавишу кнопки 89 выключения вибропитателя для прекращения подачи звукового сигнала. После этого необходимо выяснить причину срабатывания технологической блокировки, устранить ее и включить сепаратор в работу, как это описано в разделе 10.

11. ОСОБЕННОСТИ РАБОТЫ ВЫСОКОВОЛЬТНОГО ИСТОЧНИКА

- 11.1. В процессе работы сепаратора в разрядном промежутке могут возникать кратковременные электрические разряды, вызванные попаданием электропроводящих частиц в разрядный промежуток. Это является нормальным режимом работы.
- 11.2. В случае возникновения короткого замыкания автоматически отключается высокое напряжение, на панели гаснет светодиод "ВН включено" и начинает мигать желтый светодиод "Перегрузка по току". Через 1 секунду система автоматики снова включает высокое напряжение. Всего система производит 3 попытки включить высокое напряжение. Если причина короткого замыкания самоустранилась, сепаратор продолжает работу в заданном режиме. Если режим короткого замыкания не устранен, на панели высоковольтных источников загорается светодиод "Отказ" (101) и высокое напряжение отключается. Для восстановления работы источников необходимо нажать красную клавишу кнопки 94 (отключить источники высокого напряжения), выяснить причину короткого замыкания, устранить ее и включить источники, как это описано в разделе 10.

11.3. При нагревании источника до температуры, превышающей 65 °C, источник автоматически отключается. Загорается красный светодиод "Перегрев" 101. В этом случае необходимо нажать красную клавишу кнопки 94 (отключить источник), определить причину перегрева, устранить ее, дать источнику остыть, после чего включить источники, как это описано в разделе 10.

12. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 12.1. При техническом обслуживании сепаратора необходимо руководствоваться "Правилами технической эксплуатации основного оборудования обогатительных фабрик цветной металлургии", раздел I, "Общие правила".
- 12.2. Ежедневное техническое обслуживание должно выполняться обслуживающим персоналом (сепараторщиками) и включает в себя:
- 12.2.1. регулярный наружный осмотр, и при необходимости очистку и обтирку бункеров, лотка, изоляторов, системы электродов, барабанов и приемных устройств сепаратора;
- 12.2.2. проверку наличия и исправности заземления сепаратора;
- 12.2.3. контроль положения шибера загрузочного бункера;
- 12.2.4. контроль положения отсекателей;
- 12.3. Периодически следует выполнять следующие виды технического обслуживания:
- 12.3.1. проверка натяжения нити высоковольтных электродов через 30 суток;
- 12.3.2. осмотр состояния приводных ремней и их натяжение через 90 суток.

13. ЗАМЕНА ИЗНАШИВАЮЩИХСЯ ЭЛЕМЕНТОВ

- 13.1. В процессе работы сепаратора износу и разрушению могут подвергаться:
- 13.1.1. провода высоковольтных электродов,
- 13.1.2. ремни приводов,
- 13.1.3. поверхности барабанов,
- 13.1.4. лопасти щеток.
- 13.2. При обрыве проводов электродов следует произвести плановую остановку сепаратора и отключить его от сети. Открыв дверь технологического отсека, следует удалить остатки нити коронирующего электрода и заменить ее на новую. Для изготовления проводов используется неизолированный нихромовый провод диаметром 0,20 мм, скрученный вдвое с шагом 3 4 мм. Размеры нити приведены на рис.3.
- 13.3. При значительном вытяжении или обрыве любого из ремней производится плановая остановка сепаратора и производится замена ремня. При этом необходимо выполнить следующие действия (рассматривается условно, на примере привода щетки верхней камеры).
- 13.3.1. Снять щиток укрытия привода 23.
- 13.3.2. Ослабить болты крепления кронштейна привода 54.
- 13.3.3. Ослабить натяжение ремня при помощи натяжного винта и переместить кронштейн в крайнее левое положение.
- 13.3.4. Удалить изношенный ремень.
- 13.3.5. Завести новый ремень в паз трубы каркаса и одеть его на шкив 20.
- 13.3.6. При помощи натяжного винта обеспечить необходимое натяжение ремня.
- 13.3.7. Зафиксировать положение кронштейна болтами 54.
- 13.3.8. Установить щиток 23.
- 13.4. В процессе длительной работы с абразивными материалами поверхность барабана может изнашиваться. Для восстановления поверхность барабана подвергают шлифовке.
- 13.5. Для снятия барабана необходимо произвести следующие действия (рассматриваем на примере барабана верхнего отсека).
- 13.5.1. Снять систему электродов, для чего:

- 13.5.1.1. Снять окна с обеих сторон.
- 13.5.1.2. Отвернуть и извлечь винты крепления верхних изоляторов. Между верхними изоляторами и трубами каркаса установлены дистанционные прокладки. При извлечении винтов крепления изоляторов необходимо пометить дистанционные прокладки с целью последующей установки их на свои места. При извлечении последнего из верхних винтов необходимо придерживать верхнюю часть системы электродов и аккуратно опустить ее на барабан.
- 13.5.1.3. Отвернуть и извлечь винты крепления нижних изоляторов и извлечь систему электродов из отсека.
- 13.5.2. Снять подвижный элемент отсекателя 25.
- 13.5.3. Установить отсекатель 10 в крайнее правое положение.
- 13.5.4. Уложить на бункер под барабан лист фанеры (не менее шестислойной) или гофрокартона, толщиной не менее 10 мм во всю ширину отсека, таким образом, чтобы барабан опирался на него.
- 13.5.5. Снять щиток 33.
- 13.5.6. Ослабив винты 54 крепления кронштейна 36 переместить полку в крайнее правое положение.
- 13.5.7. Снять ремень 32 со шкива барабана 31.
- 13.5.8. Отвернуть ось 124 вместе со шкивом.
- 13.5.9. Отвернуть и удалить верхние и дальний нижний, если смотреть со стороны дверей технологического отсека болты крепления фланца барабана.
- 13.5.10. Ослабить ближние к двери нижние болты крепления фланца барабана и, поворачивая фланец вокруг них, переместить барабан вперед, к дверям отсека и уложить на фанеру или гофрокартон.
- 13.5.11. Удалить последние два болта крепления фланца барабана, извлечь дистанционные прокладки (если есть), после чего извлечь барабан из отсека.
- 13.5.12. Пометить дистанционные прокладки для последующей установки на свои места.
- 13.5.13. Сборку производить в обратном порядке.
- 13.6. При длительной эксплуатации изнашиваются скребки (лопасти) щетки.
- 13.7. Для замены лопастей щетки необходимо извлечь ее из сепаратора, выполнив следующие действия.
- 13.7.1. Снять щиток 23.
- 13.7.2. Ослабив винты 54 крепления кронштейна 44 переместить кронштейн в крайнее левое положение.
- 13.7.3. Снять ремень 22 со шкива щетки 20.
- 13.7.4. Вывернув и удалив винты крепления фланца щётки к каркасу, вынуть щетку из отсека, придерживая ее за дальний конец.
- 13.7.5. Отвинтить винты 130, снять планки 131 и заменить изношенные скребки 132 (чертеж HOT 102.02.009).
- 13.8. Установку щетки производить в обратном порядке.

14. КОНТРОЛЬ И ЗАМЕНА СМАЗКИ В ПОДШИПНИКОВЫХ УЗЛАХ

- 14.1. Контроль и замену (пополнение) смазки в подшипниковых узлах необходимо производить не реже одного раза в год.
- 14.2. Для замены смазки в подшипниковых узлах барабанов и щёток установлены маслёнки.

15. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

15.1. Сепаратор до монтажа должен храниться в упакованном виде в закрытом помещении.

- Условия хранения 2 (С) по ГОСТ 15150.
- 15.2. При длительном хранении сепаратор должен храниться в складском отапливаемом, и вентилируемом помещении при температуре окружающего воздуха от +5°C до +40°C, относительной влажности до 80% и отсутствии в окружающем воздухе кислотных, щелочных и других агрессивных примесей, вызывающих коррозию металлов, или микроорганизмов, способствующих плесенеобразованию.
- 15.3. Сепаратор может транспортироваться авиационным, автомобильным и железнодорожным транспортом. Погрузка на железнодорожном транспорте должна осуществляться в соответствии с "Правилами перевозки грузов" и "Техническими условиями погрузки и крепления грузов. Транспортирование сепаратора автомобильным транспортом согласно "Общим правилам перевозки грузов автомобильным транспортом".
- 15.4. Условия транспортирования сепаратора в части воздействия климатических факторов внешней среды 8 по ГОСТ 15150, в части, воздействия механических, факторов "Ж" по ГОСТ 23170.

Руководство по эксплуатации не отражает незначительных конструктивных изменений в сепараторе, внесенных изготовителем после подписания к выпуску в свет данного руководства, а также изменений по комплектующим изделиям и документации, поступающей с ними.

ПРИЛОЖЕНИЯ

- 1. Рисунок 1 Габаритный чертёж.
- 2. Рисунок 2, листов 5.
- 3. Рисунок 3.
- 4. Рисунок 4.
- 5. Рисунок 5.
- 6. Схема электрическая принципиальная НОТ 102 со спецификацией.
- 7. Документация на комплектующие изделия.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологра (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодра (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Россия (495)268-04-70

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Казахстан (772)734-952-31

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://mechanobr.nt-rt.ru/ || mbw@nt-rt.ru